Browse Exams — Mock Exams & Practice Tests

1Z0-1127-25 Cheatsheet — RAG, Evaluation, Safety, Deployment & Cost Control

Last-mile 1Z0-1127-25 review: RAG pipeline, chunking and embeddings pickers, evaluation signals, prompt injection defenses, deployment patterns, and cost/latency controls.

Use this for last‑mile review. Pair it with the Syllabus.


1) The canonical RAG pipeline

    flowchart LR
	  DOC["Docs"] --> CH["Chunk + clean"]
	  CH --> EMB["Embeddings"]
	  EMB --> IDX["Vector index"]
	  Q["Query"] --> QEMB["Query embedding"]
	  QEMB --> RET["Retrieve top-k"]
	  RET --> PROMPT["Prompt with context"]
	  PROMPT --> LLM["LLM"]
	  LLM --> OUT["Answer + citations"]

Rule: “Better prompts” rarely fix a broken retrieval layer.


2) Chunking pickers (why retrieval looks wrong)

DecisionToo smallToo big
Chunk sizelow contextlow precision
Overlapwasted costcontinuity breaks
Metadatamissing filterswrong tenant/version

3) Evaluation signals (exam-friendly)

LayerWhat to measure
Retrievalhit rate/top‑k relevance, filter correctness
Generationgroundedness, correctness, citation quality
Safetyleakage, injection resilience, policy violations

4) Prompt injection defenses (practical)

  • Treat retrieved content as untrusted input.
  • Use explicit system instructions to ignore instructions from documents.
  • Strip/limit tool permissions; enforce allowlists.
  • Log and monitor suspicious queries and “jailbreak” patterns.

5) Cost/latency controls

  • Reduce candidate set with metadata filters.
  • Keep top‑k intentional; cap context length.
  • Cache embeddings and reuse indexes.
  • Monitor token usage and tail latency.